Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Rep ; 12(5): e15965, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38444051

RESUMO

Intravenous (systemic) bolus injection of fentanyl (FNT) reportedly induces an immediate vagal-mediated apnea; however, the precise origin of vagal afferents responsible for this apnea remains unknown. We tested whether intralaryngeal (local) application of FNT would also trigger an apnea and whether the apneic response to both local and systemic administration of FNT was laryngeal afferent-mediated. Cardiorespiratory responses to FNT were recorded in anesthetized male adult rats with and without bilateral sectioning of the superior laryngeal nerve (SLNx) or peri-SLN capsaicin treatment (SLNcap) to block local C-fiber signal conduction. Opioid mu-receptor (MOR)-immunoreactivity was detected in laryngeal C- and myelinated neurons. We found that local and systemic administration of FNT elicited an immediate apnea. SLNx, rather than SLNcap, abolished the apneic response to local FNT application though MORs were abundantly expressed in both laryngeal C- and myelinated neurons. Importantly, SLNx failed to affect the apneic response to systemic FNT administration. These results lead to the conclusion that laryngeal afferents' MORs are responsible for the apneic response to local, but not systemic, administration of FNT.


Assuntos
Líquidos Corporais , Fentanila , Masculino , Animais , Ratos , Fentanila/farmacologia , Apneia/induzido quimicamente , Administração Cutânea , Administração Intravenosa , Receptores Opioides
2.
Molecules ; 28(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37764232

RESUMO

The Nb3Al superconductor with excellent physical and working properties is one of the most promising materials in high-magnetic-field applications. However, it is difficult to prepare high-quality Nb3Al with a desired superconducting transition temperature (Tc) because of its narrow phase formation area at high temperatures (>1940 °C). This work reports a method to prepare stoichiometric Nb3Al powder samples at a relatively low temperature (1400 °C) by exploiting the nano effect of Nb particles with pretreatment of Nb powder under H2/Ar atmosphere. The obtained Nb3Al samples exhibit high Tc's of ~16.8K. Based on density functional theory (DFT) calculations and statistical mechanics analysis, the crucial role of quantum effect in leading to the success of the preparation method was studied. A new measure of surface energy (MSE) of a model particle is introduced to study its size and face dependence. A rapid convergence of the MSE with respect to the size indicates a quick approach to the solid limit, while the face dependence of MSE reveals a liquid-like behavior. The surface effect and quantum fluctuation of the Nbn clusters explain the success of the preparation method.

3.
Respir Physiol Neurobiol ; 313: 104053, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37019251

RESUMO

Sudden Infant Death Syndrome (SIDS) occurs during sleep in seemingly healthy infants. Maternal cigarette smoking and hypoxemia during sleep are assumed to be the major causal factors. Depressed hypoxic ventilatory response (dHVR) is observed in infants with high risk of SIDS, and apneas (lethal ventilatory arrest) appear during the fatal episode of SIDS. Disturbance of the respiratory center has been proposed to be involved, but the pathogenesis of SIDS is still not fully understood. Peripherally, the carotid body is critical to generate HVR, and bronchopulmonary and superior laryngeal C-fibers (PCFs and SLCFs) are important for triggering central apneas; however, their roles in the pathogenesis of SIDS have not been explored until recently. There are three lines of recently accumulated evidence to show the disorders of peripheral sensory afferent-mediated respiratory chemoreflexes in rat pups with prenatal nicotinic exposure (a SIDS model) in which acute severe hypoxia leads to dHVR followed by lethal apneas. (1) The carotid body-mediated HVR is suppressed with a reduction of the number and sensitivity of glomus cells. (2) PCF-mediated apneic response is largely prolonged via increased PCF density, pulmonary IL-1ß and serotonin (5-hydroxytryptamine, 5-HT) release, along with the enhanced expression of TRPV1, NK1R, IL1RI and 5-HT3R in pulmonary C-neurons to strengthen these neural responses to capsaicin, a selective stimulant to C-fibers. (3) SLCF-mediated apnea and capsaicin-induced currents in superior laryngeal C-neurons are augmented by upregulation of TRPV1 expression in these neurons. These results, along with hypoxic sensitization/stimulation of PCFs, gain insight into the mechanisms of prenatal nicotinic exposure-induced peripheral neuroplasticity responsible for dHVR and long-lasting apnea during hypoxia in rat pups. Therefore, in addition to the disturbance in the respiratory center, the disorders of peripheral sensory afferent-mediated chemoreflexes may also be involved in respiratory failure and death denoted in SIDS victims.


Assuntos
Nicotina , Morte Súbita do Lactente , Gravidez , Feminino , Animais , Ratos , Nicotina/efeitos adversos , Nicotina/metabolismo , Apneia/induzido quimicamente , Morte Súbita do Lactente/etiologia , Capsaicina/farmacologia , Serotonina/metabolismo , Fibras Nervosas Amielínicas , Hipóxia/metabolismo
4.
ACS Appl Mater Interfaces ; 15(17): 21228-21238, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37078901

RESUMO

Persistent luminescence nanoparticle scintillators (PLNS) have been attempted for X-ray-induced photodynamic therapy (X-PDT) because persistent luminescence after ceasing radiation can make PLNS use less cumulative irradiation time and dose to generate the same amount of reactive oxygen species (ROS) compared with conventional scintillators to combat cancer cells. However, excessive surface defects in PLNS reduce the luminescence efficiency and quench the persistent luminescence, which is fatal to the efficacy of X-PDT. Herein, the PLNS of SiO2@Zn2SiO4:Mn2+, Yb3+, Li+ was designed by the energy trap engineering and synthesized by a simple template method, which has excellent X-ray and UV-excited persistent luminescence and continuously tunable emission spectra from 520 to 550 nm. Its luminescence intensity and afterglow time are more than 7 times that of the reported Zn2SiO4:Mn2+ used for X-PDT. By loading a Rose Bengal (RB) photosensitizer, an effective persistent energy transfer from the PLNS to photosensitizer is observed even after the removal of X-ray irradiation. The X-ray dose of nanoplatform SiO2@Zn2SiO4:Mn2+, Yb3+, Li+@RB in X-PDT of HeLa cancer cells was reduced to 0.18 Gy compared to the X-ray dose of 1.0 Gy for Zn2SiO4:Mn for X-PDT. This indicates that the Zn2SiO4:Mn2+, Yb3+, Li+ PLNS have great potential for X-PDT applications.

5.
Respir Physiol Neurobiol ; 306: 103952, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35905863

RESUMO

Exposure to aerosolized citric acid (CA, 150 mM) and prostaglandin E2 (PGE2, 0.43 mM) for 10 min in guinea pigs reportedly produces the distinct cough patterns (Type I vs. II) and ventilatory responses (long-lasting hyperventilation vs. brief tachypnea) even though triggering the same cough numbers. Type I and II coughs are primarily mediated by activation of TRPV1 and EP3 receptors (a PGE2 receptor) of vagal C-fibers respectively. Substance P (SP) and neurokinin A (NKA) released by vagal pulmonary sensory fibers peripherally are capable of affecting CA-induced cough and ventilation via preferentially activating neurokinin 1 and 2 receptors (NK1R and NK2R) respectively. This study aimed to define the impacts of CA- and PGE2-exposure on pulmonary SP and NKA levels and the roles of NK1R and NK2R in modulating CA- and PGE2-evoked cough and ventilatory responses. In unanesthetized guinea pigs, we determined: (1) pulmonary SP and NKA contents induced by the CA- or PGE2-exposure; (2) effects of CP-99994 and SR-48968 (a NK1R and a NK2R antagonist respectively) given by intraperitoneal injection (IP) or aerosol inhalation (IH) on the CA- and PGE2-evoked cough and ventilatory responses; and (3) immunocytochemical expressions of NK1R/NK2R in vagal C-neurons labeled by TRPV1 or EP3 receptors. We found that CA- and PGE2-exposure evoked Type I and II cough respectively associated with different degrees of increases in pulmonary SP and NKA. Applications of CP-99994 and SR-48968 via IP and IH efficiently suppressed the cough responses to CA with less impact on the cough response to PGE2. These antagonists inhibited or blocked the ventilatory response to CA and caused hypoventilation in response to PGE2. Moreover, NK1R and NK2R were always co-expressed in vagal C-neurons labeled by TRPV1 or EP3 receptors. These results suggest that SP and NKA endogenously released by CA- and PGE2-exposure play important roles in generating the cough and ventilatory responses to CA and PGE2, at least in part, via activation of NK1R and NK2R expressed in vagal C-neurons (pulmonary C-neurons).


Assuntos
Neurocinina A , Substância P , Animais , Benzamidas , Ácido Cítrico/farmacologia , Tosse/induzido quimicamente , Dinoprostona , Cobaias , Neurocinina A/farmacologia , Piperidinas , Receptores da Neurocinina-1/metabolismo , Receptores da Neurocinina-2/metabolismo , Aerossóis e Gotículas Respiratórios , Substância P/farmacologia
6.
Nanoscale ; 14(25): 8978-8985, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35687017

RESUMO

The multifunctional theranostic nanoplatform based on the combination of persistent luminescent nanoparticles (PLNPs) and metal-organic frameworks (MOFs) has both in vivo imaging and tumor therapeutic drug-loading functions, providing a new strategy for accurate and effective tumor diagnosis and treatment. Herein, the near-infrared (NIR) PLNP SiO2@Zn1.05Ga1.9O4:Cr was combined with HKUST-1 MOFs to form a core-shell structure theranostic nanoplatform which possessed the triple function of autofluorescence-free NIR PersL bioimaging, tumor chemodynamic therapy (CDT), and tumor photothermal therapy (PTT). Also, the photothermal conversion efficiency reached 58.7%, which is superior to the reported nano metal-organic framework (NMOF) photothermal reagents. We demonstrated that the nanoplatform could enter the tumors of mice within 0.5 h and could be target-activated by H2O2 and H2S in the tumor cells, resulting in effective PTT and CDT synergistic treatment. Tumor-bearing mice experiments showed that the tumor could be completely cured without harming normal tissue. This theranostic nanoplatform may provide a promising strategy showing imaging, PTT, and CDT synergistic treatment tri-mode for clinical cancer therapy.


Assuntos
Nanopartículas , Neoplasias , Animais , Linhagem Celular Tumoral , Peróxido de Hidrogênio/uso terapêutico , Luminescência , Estruturas Metalorgânicas , Camundongos , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Fototerapia , Terapia Fototérmica , Dióxido de Silício/farmacologia , Nanomedicina Teranóstica
7.
PLoS One ; 16(11): e0251389, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34793480

RESUMO

Glycinebetaine (GB) is an osmoprotectant found in plants under environmental stresses that incorporates drought and is associated with drought tolerance in several plants, such as the woody pear. However, how GB improves drought tolerance in pears remains unclear. In the current study, we explored the mechanism by which GB enhances drought tolerance of whole pear plants (Pyrus bretschneideri Redh. cv. Suli) supplied with exogenous GB. The results showed that on the sixth day after withholding water, levels of O2·-, H2O2, malonaldehyde (MDA) and electrolyte leakage in the leaves were substantially increased by 143%, 38%, 134% and 155%, respectively. Exogenous GB treatment was substantially reduced O2·-, H2O2, MDA and electrolyte leakage (38%, 24%, 38% and 36%, respectively) in drought-stressed leaves. Furthermore, exogenous GB induced considerably higher antioxidant enzyme activity in dry-stressed leaves than drought-stressed treatment alone on the sixth day after withholding water, such as superoxide dismutase (SOD) (201%) and peroxidase (POD) (127%). In addition, these GB-induced phenomena led to increased endogenous GB levels in the leaves of the GB 100 + drought and GB 500 + drought treatment groups by 30% and 78%, respectively, compared to drought treatment alone. The findings obtained were confirmed by the results of the disconnected leaf tests, in which GB contributed to a substantial increase in SOD activity and parallel dose- and time-based decreases in MDA levels. These results demonstrate that GB-conferred drought resistance in pears may be due in part to minimizing symptoms of oxidative harm incurred in response to drought by the activities of antioxidants and by reducing the build-up of ROS and lipid peroxidation.


Assuntos
Betaína/farmacologia , Pressão Osmótica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Pyrus/metabolismo , Secas , Peroxidação de Lipídeos/efeitos dos fármacos , Malondialdeído/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Pyrus/efeitos dos fármacos , Superóxido Dismutase/metabolismo
8.
J Appl Physiol (1985) ; 131(3): 986-996, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34323594

RESUMO

Aerosolized adenosine 5'-triphosphate (ATP) induces cough and bronchoconstriction by activating vagal sensory fibers' P2X3 and P2X2/3 receptors (P2X3R and P2X2/3R). The goal of this study is to determine the effect of these receptors on the superior laryngeal nerve (SLN)-mediated cardiorespiratory responses to ATP challenge. We compared the cardiorespiratory responses to intralaryngeal perfusion of either ATP or α,ß-methylene ATP in rat pups before and after 1) intralaryngeal perfusion of A-317491 (a P2X3R and P2X2/3R antagonist); 2) bilateral section of the SLN; and 3) peri-SLN treatment with capsaicin (to block conduction in superior laryngeal C-fibers, SLCFs) or A-317491. The immunoreactivity (IR) of P2X3R and P2X2R was determined in laryngeal sensory neurons of the nodose/jugular ganglia. Lastly, a whole cell patch clamp recording was used to determine ATP- or α,ß-methylene ATP (α,ß-mATP)-induced currents without and with A-317491 treatment. It was found that intralaryngeal perfusion of both ATP and α,ß-mATP induced immediate apnea, hypertension, and bradycardia. The apnea was eliminated and the hypertension and bradycardia were blunted by intralaryngeal perfusion of A-317491 and peri-SLN treatment with either A-317491 or capsaicin, although all of the cardiorespiratory responses were abolished by bilateral section of the SLN. P2X3R- and P2X2R-IR were observed in nodose and jugular ganglionic neurons labeled by fluoro-gold (FG). ATP- and α,ß-mATP-induced currents recorded in laryngeal C-neurons were reduced by 75% and 95%, respectively, by the application of A-317491. It is concluded that in anesthetized rat pups, the cardiorespiratory responses to intralaryngeal perfusion of either ATP or α,ß-mATP are largely mediated by the activation of SLCFs' P2X3R-P2X2/3R.NEW & NOTEWORTHY Aerosolized ATP induces cough and bronchoconstriction via activating P2X3 and P2X2/3 receptors (P2X3R and P2X2/3R) localized on vagal pulmonary sensory fibers. The superior laryngeal nerve (SLN), particularly SLN C-fibers (SLCFs), is involved in generating apnea, hypertension, and bradycardia. This study demonstrates for the first time that either ATP or α,ß-mATP applied onto the laryngeal mucosa elicit these cardiorespiratory responses predominately through the activation of P2X3R-P2X2/3R localized on SLCFs.


Assuntos
Apneia , Receptores Purinérgicos P2 , Trifosfato de Adenosina , Animais , Nervos Laríngeos , Fibras Nervosas Amielínicas , Ratos , Células Receptoras Sensoriais
9.
Nano Lett ; 21(12): 4903-4910, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34100617

RESUMO

Persistent luminescence nanoparticles (PLNPs) are an emerging photonic nanomaterial that possesses uniquely persistent luminescence properties after excitation ceases. They can be repeatedly recharged in vitro and in vivo and hold great promise for numerous areas and applications. Unfortunately, none of the existing synthesis methods can control their composition to grow core-shell structured PLNPs with desirable shapes and enhanced functionalities. Here, we report on straightforward thermolysis-mediated colloidal synthesis of CaF2:Dy@NaYF4 core-shell PLNPs that can enhance persistent luminescence under both light and X-ray excitations. Benefitting from the well-matched crystal lattices between CaF2 and NaYF4, this colloidal synthesis makes it possible to prepare core-shell PLNPs with exquisite control of the compositions, shapes, and enhanced luminescence. This demonstration of the developing colloidal core-shell PLNPs overcomes the current key bottleneck regarding the synthesis of heterostructured PLNPs and sets the stage for fully exploiting the potential of these fascinating luminous materials.


Assuntos
Nanopartículas , Nanoestruturas , Luminescência
10.
PLoS One ; 16(2): e0246375, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33529249

RESUMO

Prostaglandin E2 (PGE2)-induced coughs in vivo and vagal nerve depolarization in vitro are inhibited by systemic and local administration of prostaglandin EP3 receptor (L-798106) and TRPV1 antagonists (JNJ 17203212). These results indicate a modulating effect of TRPV1 on the EP3 receptor-mediated cough responses to PGE2 likely through the vagal sensory nerve. This study aimed to determine whether 1) inhalation of aerosolized JNJ 17203212 and L-798106 affected cough responses to citric acid (CA, mainly stimulating TRPV1) and PGE2; 2) TRPV1 and EP3 receptor morphologically are co-expressed and electrophysiologically functioned in the individual of vagal pulmonary C-neurons (cell bodies of bronchopulmonary C-fibers in the nodose/jugular ganglia); and 3) there was a cross-effect of TRPV1 and EP3 receptor on these neural excitations. To this end, aerosolized CA or PGE2 was inhaled by unanesthetized guinea pigs pretreated without or with each antagonist given in aerosol form. Immunofluorescence was applied to identify the co-expression of TRPV1 and EP3 receptor in vagal pulmonary C-neurons (retrogradely traced by DiI). Whole-cell voltage patch clamp approach was used to detect capsaicin (CAP)- and PGE2-induced currents in individual vagal pulmonary C-neurons and determine the effects of the TRPV1 and EP3 receptor antagonists on the evoked currents. We found that PGE2-induced cough was attenuated by JNJ 17203212 or L-798106 and CA-evoked cough greatly suppressed only by JNJ 17203212. Approximately 1/4 of vagal pulmonary C-neurons co-expressed EP3 with a cell size < 20 µm. Both CAP- and PGE2-induced currents could be recorded in the individuals of some vagal pulmonary C-neurons. The former was largely inhibited only by JNJ 17203212, while the latter was suppressed by JNJ 17203212 or L-798106. The similarity of the cross-effect of both antagonists on cough and vagal pulmonary C-neural activity suggests that a subgroup of vagal pulmonary C-neurons co-expressing TRPV1 and EP3 receptor is, at least in part, responsible for the cough response to PGE2.


Assuntos
Brônquios/metabolismo , Tosse/metabolismo , Fibras Nervosas Amielínicas/metabolismo , Receptores de Prostaglandina E Subtipo EP3/metabolismo , Canais de Cátion TRPV/metabolismo , Aminopiridinas/farmacologia , Animais , Capsaicina , Ácido Cítrico/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dinoprostona , Cobaias , Ativação do Canal Iônico/efeitos dos fármacos , Masculino , Modelos Biológicos , Fibras Nervosas Amielínicas/efeitos dos fármacos , Gânglio Nodoso/efeitos dos fármacos , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Ventilação Pulmonar/efeitos dos fármacos , Receptores de Prostaglandina E Subtipo EP3/antagonistas & inibidores , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Canais de Cátion TRPV/antagonistas & inibidores , Nervo Vago/efeitos dos fármacos , Nervo Vago/metabolismo
11.
Am J Physiol Lung Cell Mol Physiol ; 318(1): L89-L97, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31617735

RESUMO

Liquiritin apioside (LA), a main flavonoid component of licorice, reportedly suppresses cough responses to inhalation of aerosolized capsaicin [CAP; a stimulant to transient receptor potential vanilloid 1 (TRPV1)] in conscious guinea pigs via acting on peripheral nerves. However, the evidence of LA having a direct effect on airway sensory fibers is lacking. Considering the important role laryngeal chemoreceptors and mechanoreceptors play in triggering apnea and cough, we studied whether LA suppressed the apneic responses to stimulation of these receptors via directly acting on the superior laryngeal nerve (SLN). Intralaryngeal delivery of chemical [CAP, HCl, and distilled water (DW)] and mechanical [an air-pulse (AP)] stimulations was applied in anesthetized rat pups to evoke the apnea. These stimuli were repeated after intralaryngeal LA treatment or peri-SLN LA treatment to determine the direct effect of LA on the SLN. Our results showed that all stimuli triggered an immediate apnea. Intralaryngeal LA treatment significantly attenuated the apneic response to chemical but not mechanical stimulations. The same attenuation was observed after peri-SLN LA treatment. Owing that TRPV1 receptors of laryngeal C fibers are responsible for the CAP-triggered apneas, the LA impact on the activity of laryngeal C neurons retrogradely traced by DiI was subsequently studied using a patch-clamp approach. LA pretreatment significantly altered the electrophysiological kinetics of CAP-induced currents in laryngeal C neurons by reducing their amplitudes, increasing the rise times, and prolonging the decay times. In conclusion, our results, for the first time, reveal that LA suppresses the laryngeal chemoreceptor-mediated apnea by directly acting on the SLN (TRPV1 receptors of laryngeal C fibers).


Assuntos
Flavanonas/farmacologia , Glucosídeos/farmacologia , Laringe/efeitos dos fármacos , Reflexo/efeitos dos fármacos , Animais , Apneia/tratamento farmacológico , Apneia/metabolismo , Tosse/tratamento farmacológico , Tosse/metabolismo , Feminino , Nervos Laríngeos/efeitos dos fármacos , Nervos Laríngeos/metabolismo , Laringe/metabolismo , Masculino , Fibras Nervosas Amielínicas/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Gravidez , Ratos , Ratos Sprague-Dawley , Canais de Cátion TRPV/metabolismo
12.
FASEB J ; 33(10): 10731-10741, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31251077

RESUMO

Prenatal nicotinic exposure (PNE) reportedly sensitizes bronchopulmonary C-fibers (PCFs) and prolongs PCF-mediated apnea in rat pups, contributing to the pathogenesis of sudden infant death syndrome. Serotonin, or 5-hydroxytryptamine (5-HT), induces apnea via acting on 5-HT receptor 3 (5-HT3R) in PCFs, and among the 5-HT3R subunits, 5-HT3B is responsible for shortening the decay time of 5-HT3R-mediated currents. We examined whether PNE would promote pulmonary 5-HT secretion and prolong the apnea mediated by 5-HT3Rs in PCFs via affecting the 5-HT3B subunit. To this end, the following variables were compared between the control and PNE rat pups: 1) the 5-HT content in bronchoalveolar lavage fluid, 2) the apneic response to the right atrial bolus injection of phenylbiguanide (a 5-HT3R agonist) before and after PCF inactivation, 3) 5-HT3R currents and the stimulus threshold of the action currents of vagal pulmonary C-neurons, and 4) the immunoreactivity (IR) and mRNA expression of 5-HT3A and 5-HT3B in these neurons. Our results showed that PNE up-regulated the pulmonary 5-HT concentration and strengthened the PCF 5-HT3R-mediated apnea. PNE significantly facilitated neural excitability by shortening the decay time of 5-HT3R currents, lowering the stimulus threshold, and increasing 5-HT3B IR. In summary, PNE prolongs the apnea mediated by 5-HT3Rs in PCFs, likely by increasing 5-HT3B subunits to enhance the excitability of 5-HT3 channels.-Zhao, L., Gao, X., Zhuang, J., Wallen, M., Leng, S., Xu, F. Prolongation of bronchopulmonary C-fiber-mediated apnea by prenatal nicotinic exposure in rat pups: role of 5-HT3 receptors.


Assuntos
Apneia/etiologia , Apneia/fisiopatologia , Pulmão/efeitos dos fármacos , Pulmão/inervação , Fibras Nervosas Amielínicas/efeitos dos fármacos , Fibras Nervosas Amielínicas/fisiologia , Nicotina/toxicidade , Efeitos Tardios da Exposição Pré-Natal/etiologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Receptores 5-HT3 de Serotonina/fisiologia , Animais , Animais Recém-Nascidos , Apneia/genética , Biguanidas/administração & dosagem , Líquido da Lavagem Broncoalveolar/química , Modelos Animais de Doenças , Feminino , Humanos , Recém-Nascido , Pulmão/fisiopatologia , Masculino , Nicotina/administração & dosagem , Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores 5-HT3 de Serotonina/genética , Serotonina/metabolismo , Agonistas do Receptor 5-HT3 de Serotonina/administração & dosagem , Morte Súbita do Lactente/etiologia
13.
PLoS One ; 14(5): e0217366, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31116792

RESUMO

Cough number and/or sound have been used to assess cough sensitivity/intensity and to discriminate cough patterns in clinical settings. However, to date, only manual counting of cough number in an offline manner is applied in animal cough studies, which diminishes the efficiency of cough identification and hinders the diagnostic discrimination of cough patterns, especially in animals with pulmonary diseases. This study aims to validate a novel recording/analysis system by which cough numbers are automatically counted and cough patterns are comprehensively differentiated in real time. The experiment was carried out in conscious guinea pigs exposed to aerosolized citric acid (CA, 150 mM) and prostaglandin E2 (PGE2, 0.43 mM). Animal body posture (video), respiratory flow, and cough acoustics (audio) were simultaneously monitored and recorded. Cough number was counted automatically, and cough sound parameters including waveform, duration, power spectral density, spectrogram, and intensity, were analyzed in real time. Our results showed that CA- and PGE2-evoked coughs had the same cough numbers but completely different patterns [individual coughs vs. bout(s) of coughs]. Compared to CA-evoked coughs, PGE2-evoked coughs possess a longer latency, higher cough rate (coughs/min), shorter cough sound duration, lower cough sound intensity, and distinct cough waveforms and spectrograms. A few mucus- and wheeze-like coughs were noted in response to CA but not to PGE2. In conclusion, our recording/analysis system is capable of automatically counting the cough number and successfully differentiating the cough pattern by using valuable cough sound indexes in real time. Our system enhances the objectivity, accuracy, and efficiency of cough identification and count, improves the intensity evaluation, and offers ability for pattern discrimination compared to traditional types of cough identification. Importantly, this approach is beneficial for assessing the efficacy of putative antitussive drugs in animals without or with pulmonary diseases, particularly in cases without significant change in cough number.


Assuntos
Ácido Cítrico/administração & dosagem , Tosse/induzido quimicamente , Tosse/fisiopatologia , Dinoprostona/administração & dosagem , Acústica , Aerossóis , Animais , Modelos Animais de Doenças , Cobaias , Humanos , Hiperventilação/induzido quimicamente , Hiperventilação/fisiopatologia , Masculino , Pletismografia Total , Taxa Respiratória/efeitos dos fármacos , Volume de Ventilação Pulmonar/efeitos dos fármacos , Gravação em Vídeo
14.
Respir Physiol Neurobiol ; 264: 40-50, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30999061

RESUMO

Twenty-five years ago, Filiano and Kinney (1994) proposed that a critical period of postnatal development constitutes one of the three risk factors for sudden infant death syndrome (SIDS). The underlying mechanism was poorly understood. In the last 17 years, much has been uncovered on this period in the rat. Against several expected trends of development, abrupt neurochemical, metabolic, ventilatory, and electrophysiological changes occur in the respiratory system at P12-13. This results in a transient synaptic imbalance with suppressed excitation and enhanced inhibition, and the response to acute hypoxia is the weakest at this time, both at the cellular and system's levels. The basis for the synaptic imbalance is likely to be contributed by a reduced expression of brain-derived neurotrophic factor (BDNF) and its TrkB receptors in multiple brain stem respiratory-related nuclei during the critical period. Exogenous BDNF or a TrkB agonist partially reverses the synaptic imbalance, whereas a TrkB antagonist accentuates the imbalance. A transient down-regulation of pituitary adenylate cyclase-activating polypeptide (PACAP) at P12 in respiratory-related nuclei also contributes to the vulnerability of this period. Carotid body denervation during this time or perinatal hyperoxia merely delays and sometimes prolongs, but not eliminate the critical period. The rationale for the necessity of the critical period in postnatal development is discussed.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipóxia/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptor trkB/metabolismo , Fenômenos Fisiológicos Respiratórios , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Animais , Ratos , Receptor trkB/agonistas , Receptor trkB/antagonistas & inibidores
15.
FASEB J ; 31(12): 5625, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29191966
16.
Respir Res ; 18(1): 199, 2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29187212

RESUMO

BACKGROUND: Asthma is characterized by chronic airway inflammation, airway hyperresponsiveness (AHR), and airway remodeling. While exposure of house dust mites (HDM) is a common cause of asthma, the pathogenesis of the HDM-induced asthma is not fully understood. Bronchopulmonary C-fibers (PCFs) contribute to the neurogenic inflammation, viral infection induced-persistent AHR, and ovalbumin induced collagen deposition largely via releasing neuropeptides, such as substance P (SP). However, PCF roles in the pathogenesis of the HDM-induced asthma remain unexplored. The goal of this study was to determine what role PCFs played in generating these characteristics. METHODS: We compared the following variables among the PCF-intact and -degenerated BALB/c mice with and without chronic HDM exposure (four groups): 1) AHR and pulmonary SP; 2) airway smooth muscle (ASM) mass; 3) pulmonary inflammatory cells; and 4) epithelium thickening and mucus secretion. RESULTS: We found that HDM evoked AHR associated with upregulation of pulmonary SP and inflammation, ASM mass increase, epithelium thickenings, and mucus hypersecretion. PCF degeneration decreased the HDM-induced changes in AHR, pulmonary SP and inflammation, and ASM mass, but failed to significantly affect the epithelium thickening and mucus hypersecretion. CONCLUSION: Our data suggest an involvement of PCFs in the mechanisms by which HDM induces allergic asthma via airway inflammation, AHR, and airway remodeling.


Assuntos
Remodelação das Vias Aéreas/fisiologia , Fibras Nervosas Amielínicas/patologia , Fibras Nervosas Amielínicas/fisiologia , Pyroglyphidae , Hipersensibilidade Respiratória/patologia , Remodelação das Vias Aéreas/efeitos dos fármacos , Animais , Lavagem Broncoalveolar , Líquido da Lavagem Broncoalveolar/imunologia , Broncoconstritores/farmacologia , Relação Dose-Resposta a Droga , Feminino , Cloreto de Metacolina/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Pyroglyphidae/imunologia , Hipersensibilidade Respiratória/etiologia , Hipersensibilidade Respiratória/imunologia
17.
FASEB J ; 31(10): 4325-4334, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28615326

RESUMO

Maternal cigarette smoke, including prenatal nicotinic exposure (PNE), is responsible for sudden infant death syndrome (SIDS). The fatal events of SIDS are characterized by severe bradycardia and life-threatening apneas. Although activation of transient receptor potential vanilloid 1 (TRPV1) of superior laryngeal C fibers (SLCFs) could induce bradycardia and apnea and has been implicated in SIDS pathogenesis, how PNE affects the SLCF-mediated cardiorespiratory responses remains unexplored. Here, we tested the hypothesis that PNE would aggravate the SLCF-mediated apnea and bradycardia via up-regulating TRPV1 expression and excitation of laryngeal C neurons in the nodose/jugular (N/J) ganglia. To this end, we compared the following outcomes between control and PNE rat pups at postnatal days 11-14: 1) the cardiorespiratory responses to intralaryngeal application of capsaicin (10 µg/ml, 50 µl), a selective stimulant for TRPV1 receptors, in anesthetized preparation; 2) immunoreactivity and mRNA of TRPV1 receptors of laryngeal sensory C neurons in the N/J ganglia retrogradely traced by 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate; and 3) TRPV1 currents and electrophysiological characteristics of these neurons by using whole-cell patch-clamp technique in vitro Our results showed that PNE markedly prolonged the apneic response and exacerbated the bradycardic response to intralaryngeal perfusion of capsaicin, which was associated with up-regulation of TRPV1 expression in laryngeal C neurons. In addition, PNE increased the TRPV1 currents, depressed the slow delayed rectifier potassium currents, and increased the resting membrane potential of these neurons. Our results suggest that PNE is capable of aggravating the SLCF-mediated apnea and bradycardia through TRPV1 sensitization and neuronal excitation, which may contribute to the pathogenesis of SIDS.-Gao, X., Zhao, L., Zhuang, J., Zang, N., Xu, F. Prenatal nicotinic exposure prolongs superior laryngeal C-fiber-mediated apnea and bradycardia through enhancing neuronal TRPV1 expression and excitation.


Assuntos
Apneia/metabolismo , Bradicardia/metabolismo , Fibras Nervosas Amielínicas/metabolismo , Nicotina/farmacologia , Células Receptoras Sensoriais/metabolismo , Fumaça/efeitos adversos , Canais de Cátion TRPV/metabolismo , Animais , Animais Recém-Nascidos , Apneia/induzido quimicamente , Bradicardia/induzido quimicamente , Capsaicina/farmacologia , Modelos Animais de Doenças , Técnicas de Patch-Clamp/métodos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/efeitos dos fármacos
18.
Respir Physiol Neurobiol ; 235: 71-78, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27743812

RESUMO

We tested the hypothesis that mu-opioid receptors (MORs) in the caudomedial nucleus tractus solitarius (cmNTS) are important for the ventilatory responses to stimulation of bronchopulmonary C-fibers (PCFs), the carotid body-mediated hypoxia, and hypercapnia independent of the carotid body. First, we used immunohistochemistry to map MORs distribution in the caudal medulla. Then we compared the effects of intra-cmNTS microinjection of DAMGO (a MOR agonist) with or without a combination of CTAP (a MOR antagonist) on the ventilatory responses to: 1) right atrial injection of capsaicin (to stimulation of PCFs) and 2) acute hypoxia (HVR, to stimulate the carotid body) in awake intact rats; and 3) hypercapnia (HCVR) in the carotid body ablated rats. The cmNTS presented the highest MORs in the caudal medulla. Microinjection of DAMGO blocked the PCF-mediated apnea, attenuated HVR (70%) and HCVR (21%), while microinjection of CTAP+DAMGO failed to affect these chemoreflexes. Our data demonstrate a critical role of activation of cmNTS MORs in regulating these chemoreflexes and imply a presence of MORs in the synapse of the 2nd-order neurons receiving inputs from PCFs and the carotid body, and NTS chemosensitive neurons.


Assuntos
Corpo Carotídeo/metabolismo , Fibras Nervosas Amielínicas/metabolismo , Receptores Opioides mu/metabolismo , Respiração , Núcleo Solitário/metabolismo , Analgésicos Opioides/farmacologia , Animais , Antiarrítmicos/farmacologia , Dióxido de Carbono/metabolismo , Corpo Carotídeo/citologia , Corpo Carotídeo/efeitos dos fármacos , Células Quimiorreceptoras/citologia , Células Quimiorreceptoras/efeitos dos fármacos , Células Quimiorreceptoras/metabolismo , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Hipercapnia/metabolismo , Hipercapnia/patologia , Hipóxia/metabolismo , Hipóxia/patologia , Imuno-Histoquímica , Masculino , Fibras Nervosas Amielínicas/efeitos dos fármacos , Ratos Sprague-Dawley , Receptores Opioides mu/agonistas , Receptores Opioides mu/antagonistas & inibidores , Respiração/efeitos dos fármacos , Núcleo Solitário/citologia , Núcleo Solitário/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
19.
Toxicol Sci ; 153(1): 103-11, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27329243

RESUMO

Maternal cigarette smoke is the major risk of sudden infant death syndrome (SIDS). A depressed ventilatory response to hypoxia (HVR) and hypercapnia (HCVR) is thought to be responsible for the pathogenesis of SIDS and the carotid body is critically involved in these responses. We have recently reported that prenatal nicotinic exposure (PNE) over the full gestation induces depressed HVR in rat pups. Here, we asked whether PNE (1) depressed not only HVR but also HCVR that were dependent on the carotid body, (2) affected some important receptors and neurochemicals expressed in the carotid body, such as tyrosine hydroxylase (TH), neurokinin-1 receptor (NK1R), and α7 nicotinic acetylcholine receptor (α7nAChR), and (3) blunted the ventilatory responses to activation of these receptors. To this end, HVR and HCVR in Ctrl and PNE pups were measured with plethysmography before and after carotid body ablation (Series I), mRNA expression and/or immunoreactivity (IR) of TH, NK1R, and α7nAChR in the carotid body were examined by RT-PCR and immunohistochemistry (Series II), and the ventilatory responses were tested before and after intracarotid injection of substance P (NK1R agonist) and AR-R17779 (α7nAChR agonist) (Series III). Our results showed that PNE (1) significantly depressed both HVR and HCVR and these depressions were abolished by carotid body ablation, (2) reduced the relative population of glomus cells, mRNA NK1R, and α7nAChR and IR of NK1R and TH in the carotid body, and (3) decreased ventilatory responses to intracarotid injection of substance P or AR-R17779. These results suggest that PNE acting via the carotid body could strikingly blunt HVR and HCVR, likely through downregulating TH and NK1R.


Assuntos
Corpo Carotídeo/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Nicotina/administração & dosagem , Efeitos Tardios da Exposição Pré-Natal , Receptores da Neurocinina-1/metabolismo , Sistema Respiratório/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo , Animais , Corpo Carotídeo/metabolismo , Feminino , Masculino , Nicotina/farmacologia , Pletismografia , Gravidez , Ratos , Ratos Sprague-Dawley , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
20.
Physiol Rep ; 3(11)2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26603459

RESUMO

The critical period of respiratory development in rats is a narrow window toward the end of the second postnatal week (P12-13), when abrupt neurochemical, electrophysiological, and ventilatory changes occur, when inhibition dominates over excitation, and when the animals' response to hypoxia is the weakest. The goal of this study was to further test our hypothesis that a major mechanism underlying the synaptic imbalance during the critical period is a reduced expression of brain-derived neurotrophic factor (BDNF) and its TrkB receptors. Our aims were to determine (1) that the inhibitory dominance observed in hypoglossal motoneurons during the critical period was also demonstrable in a key respiratory chemosensor, NTSVL; (2) if in vivo application of a TrkB agonist, 7,8-DHF, would prevent, but a TrkB antagonist, ANA-12, would accentuate the synaptic imbalance; and (3) if hypoxia would also heighten the imbalance. Our results indicate that (1) the synaptic imbalance was evident in the NTSVL during the critical period; (2) intraperitoneal injections of 7,8-DHF prevented the synaptic imbalance during the critical period, whereas ANA-12 in vivo accentuated such an imbalance; and (3) acute hypoxia induced the weakest response in both the amplitude and frequency of sEPSCs during the critical period, but it increased the frequency of sIPSCs during the critical period. Thus, our findings are consistent with and strengthen our hypothesis that BDNF and TrkB play a significant role in inducing a synaptic imbalance during the critical period of respiratory development in the rat.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...